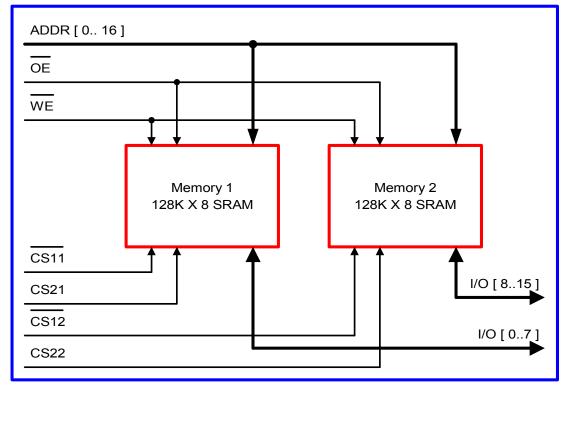
Texas Microelectronics Corporation

2- Megabit (128K X 16) High-Temperature Static RAM

TX5304


 FEATURES Operation to 200°C Popular 50-pin PGA footprint Single 5 V supply Robust Geometry Access time : 100 ns at rated temperature Completely static memory (128K x 16 bit) or (2 128K x 8 bit) organization Tri-state output 	 APPLICATIONS High Temperature Digital Systems Petroleum LWD and MWD tools Petroleum reservoir monitoring
---	---

DESCRIPTION

The TX5304 is a CMOS static RAM organized as $131,072 \times 16$ -bit words. The device is packaged in a proprietary 50-pin ceramic PGA package employing the 5 x 10 pin footprint with a pitch of 0.1 inch. Powered by a single +5 V supply, the unit offers low standby power dissipation and is suitable for battery backup systems. Three optional access times are available; output lines are tri-state; power consumption can be minimized through use of the data retention mode.

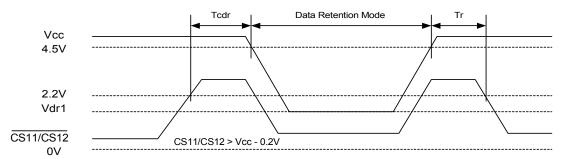
The TX5304 is composed of two individual SRAM modules, each with 128K x 8-bit memory. Each module has private enable/select lines permitting store/ access of either 8-bit or 16-bit data.

FUNCTIONAL BLOCK DIAGRAM

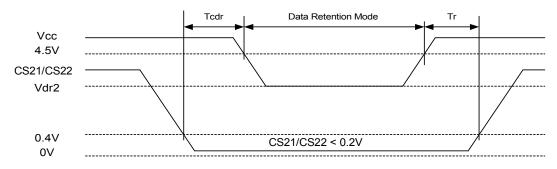
ABSOLUTE MAXIMUM RATINGS Symbol Value Unit Parameter Supply Voltage relative to $V_{\mbox{\scriptsize ss}}$ V_{cc} -0.5 to + 5.5 ٧ Voltage on any pin relative to V_{ss} -0.5 to Vcc + 0.5 ٧ VT Operating Temperature Range 0 to + 200 °C $\mathsf{T}_{\mathsf{opr}}$ Storage Temperature Range -55 to + 200 °C T_{stg}

RECOMMENDED DC OPERATING CONDITIONS (Topr = 0 to +125°C)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{cc}	4.5	5.5	V
	V _{ss}	0	0	V
Input High Voltage	V _{IH}	2.2	V _{cc} + 0.2	V
Input Low Voltage	V _{IL}	-0.5	0.8	V

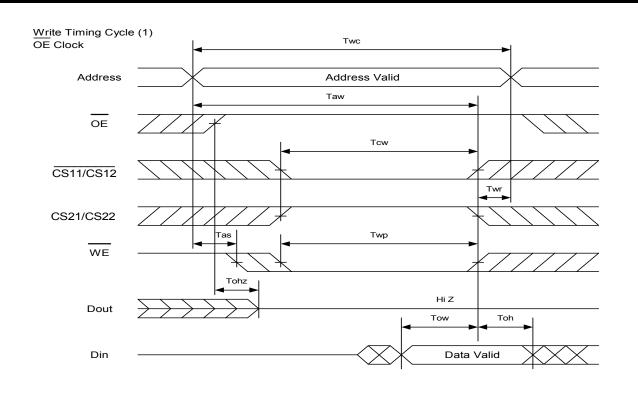

DC OPERATING CHARACTERISTICS (T_{opr} = 0 to +70^oC)

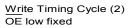
Parameter	Symbol	Тур	Unit
Input Leakage Current Output Leakage Current I _{OUT}	I _{IN} 2.0	2.0 μA	μΑ
Operating Supply Current Standby Supply Current I _{SB1} Data Retention Supply Current	I _{cc} 4.0	70 mA	mA
V _{cc} = 3.0	I _{DR}	0.2	uA
V _{cc} = 2.0	I _{DR}	0.2	uA
Output Voltage Low	V _{OL}	0.4	V
Output Voltage High	V _{OH}	2.4	V

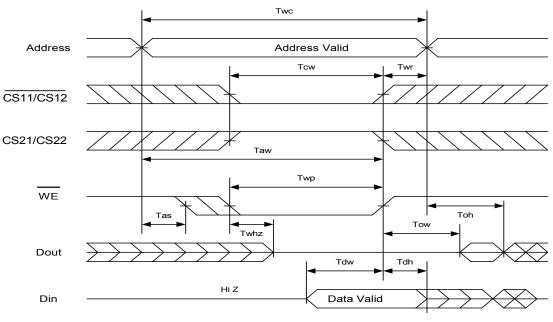

TRUTH TABLE For 128K x 16 bit operation Mode CS21/CS22 CS11/CS12 *WE *OE I/O Pin Supply Current Not Selected L Х Х Х High-Z Standby Not Selected Х Н Х Х High-Z Standby Output Disable Н High-Z Active L Н Н Read Data Output Active Н L Н L Write L Х Data Input Active Н L H = High Voltage, L = Low Voltage, X = Don't Care

Low V _{cc} Data Retention Characteristics			
Parameter	Symbol	Тур	Unit
V _{cc} for data retention	V _{DR}	1.5	V
Chip deselect to data retention time	t _{cdr}	0	ns
Operation recovery time	t _{Rc}	100	ns

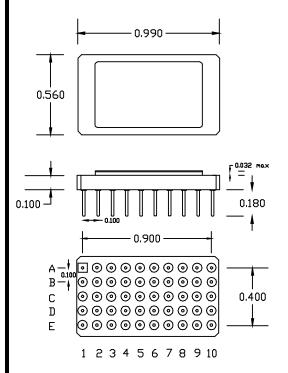
Low Vcc Data Retention Timing (CS11/CS21 Controlled)




TX5304 -- Specifications AC OPERATING CHARACTERISTICS - READ CYCLE Parameter Symbol Min Unit Max Notes Read Cycle time 100 t_{RC} ns Address access time 100 t_{AA} ns Chip selecton to output valid 100 t_{co} ns Output enable to output valid t_{OE} 50 ns Chip selection to output in low-Z $t_{\scriptscriptstyle LZ}$ 10 ns Output enable to output in low-Z 10 ns t_{OZ} Output enable to output in high-Z t_{HZ} 40 ns Output disable to output in high-Z t_{OHZ} 35 ns Output hold from address change t_{OH} 10 ns Trc Read Timing Waveforms WE is high for read cycle Address Address Valid Таа CS11/CS12 Tco1 Thz1 Tlz1 CS21/CS22 Tcc2 Tlz2 Thz2 OE Тое Tohz Tolz Toh Hi Z Dout Data Valid


AC OPERATING CHARACTERISTICS – WRITE CYCLE

Parameter	Symbol	Тур	Max	Unit	Notes
Write Cycle time	t _{wc}	100		ns	
Chip selection time	t _{cw}	100		ns	
Address setup time	t _{AS}	0		ns	
Address valid to end of write	t _{AW}	100		ns	
Write pulse width	t _{WP}	50		ns	
Vrite recovery time	t _{wr}	0		ns	
Vrite to output in High-Z	t _{wHZ}	25	30	ns	
ata to write time overlap	t _{DW}	40		ns	
Data hold from write time	t _{DH}	0		ns	
Dutput active from end of write	t _{ow}	5	30	ns	
Output disable to output in High-Z	t _{OHZ}	5		ns	



1

PACKAGE INFORMATION:

$\overline{\ }$	A	В	С	D	E
1	N.C.	N.C.	N.C.	N.C.	CS12
2	Vss	N.C.	N.C.	CS22	Vcc
3	N.C.	A16	WE	CS21	A15
4	A14	A12	A7	A8	A13
5	A6	A5	OE	A11	A9
6	A4	A3	A2	CS11	A10
7	A1	A0	I/O13	I/O12	I/O11
8	I/O10	I/O9	I/O8	I/O15	I/O14
9	Vss	I/O1	I/O3	I/O5	Vcc
10	I/O0	I/O2	I/O4	I/O6	I/07

WARNING! Static Sensitive Device.

The TX5304 is a hybrid network that includes several sensitive components. These components can be damaged or destroyed by discharge of static electricity. The discharge of static electricity is commonly referred to as Electrostatic Discharge (ESD).

The TX5304 can be protected from ESD by the following common procedures used with discrete semiconductors, namely:

- 1. Always store units in closed conductive containers
- 2. All personnel that handle units must wear static dissipative outer garments and must be electrically grounded
- 3. Always use a grounded soldering iron when making electrical connections
- 4. Worktables must have grounded dissipative covering.

ESD can cause subtle problems that have longer term, damaging affect.