Texas Microelectronics Corporation

High Temperature, Precision Rail-to-Rail Input & Output, Dual Operational Amplifier

FEATURES

- Single-Supply Operation
- Wide Bandwidth: 4 MHz
- Low Offset Voltage: 65 uV
- Unity-Gain Stable
- High Slew Rate: 4.0 V/us
- Low Noise: 3.9 nV √ Hz
- 8 pin Ceramic Hermetic SOIC package
- Operation to 200 °C

APPLICATIONS

•

- Battery Powered Instrumentation
- Power Supply Control and Protection
- DAC Output Amplifier
- ADC Input Buffer
- Down hole Instrumentation
- Engine Instrumentation

DESCRIPTION

The TX284 is a dual, single supply, 4 MHz amplifier featuring rail-to-rail inputs and outputs. It is guaranteed to operate from + 3 to + 36 (\pm 1.5 to \pm 18) volts and will function with a single supply as low as + 1.5 Volts.

This amplifier is superb for single supply applications requiring both AC and precision DC performance. The combination of bandwidth, low noise and precision makes the TX284 useful in a wide variety of applications, including filters and instrumentation.

Featuring the ability to swing rail-to-rail at both the input and output, the TX284SC enables the configuration of complex circuits in single-supply systems while maintaining high analog performance and operation at extended temperatures.

The TX284SC is specified to operate over the range of -50 °C to +200 °C and is supplied in an 8 pin Ceramic Hermetic SOIC package.

TX284SC Specifications

ELECTRICAL CHARACTERISTICS

 $V_{\rm S}$ = 5.0 V, $V_{\rm CM}$ = 2.5 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$-40^{\circ}C \le T_{A} \le +200^{\circ}C$	65	165	200	μV
Input Bias Current	Ι _Β	$-40^{\circ}C \le T_{A} \le +200^{\circ}C$	60	80	450	nA
Input Offset Current	I _{OS}	$-40^{\circ}C \le T_{A} \le +200^{\circ}C$	10	20	120	nA
Input Voltage Range		+5V	0	5	5.05	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 5 V, -40^{\circ}\text{C} \le T_A \le +200^{\circ}\text{C}$	86	90		d
Offset Voltage Drift	ΔVos/ΔT			02	2.0	μV/°C
Bias Current Drift	ΔΙ _Β /ΔΤ			150		pA/°C
Thermal Resistance	θ_{JA}			110		°C/W
Output Voltage High	Vou	h = 1.0 mA	4 85			V
Output Voltage Low	Vol	$l_{\rm L} = 1.0 \mathrm{mA}$	4.05		125	mV
Output Current			±6.5		125	mA
	.001		2010			
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{\rm S} = 2.0 \text{ V to } 10 \text{ V}, -40^{\circ}\text{C} \le T_{\rm A} \le +200^{\circ}\text{C}$	85			dB
Supply Current	I _{SY}	$V_0 = 2.5 \text{ V}, 25^{\circ}\text{C} \le T_A \le +200^{\circ}\text{C}$	1.45	2.15	2.5	mA
Supply Voltage Range	Vs		3		36	V
Slew Rate	SR	$B_1 = 2 k_0 - 40^{\circ} C < T_1 < +200^{\circ} C$	24	Δ	6	V/us
Settling Time	t.	$T_0 = 2 R_2$, $40 C = T_A = 200 C$	2.4	25	0	ν/μ5 115
Rise Time	trise	10% To 90%		2.0		μs μs
Gain Bandwidth Product	GBP		3 25	4		MH7
Phase Margin	Фм		5.25	· ·	45	Degrees
	+ IVI	L				8
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz t 10 Hz			0.3	μV р-р
Voltage Noise Density	en	f = 1 kHz			3.9	nV/√Hz
Current Noise Density	i _n				0.4	pA/√Hz

